
Computer Networks 46 (2004) 197–218

www.elsevier.com/locate/comnet
Routing bandwidth-guaranteed paths with restoration
in label-switched networks q

Samphel Norden a,1, Milind M. Buddhikot a,*,
Marcel Waldvogel b,2, Subhash Suri c,3

a Center for Networking Research, Lucent Bell Labs, Holmdel NJ 07733, USA
b IBM Research, Zurich Research Laboratory, 8803 R€uschlikon, Switzerland

c Department of Computer Science, Engineering I, Room 2111, University of California, Santa Barbara, CA 93106, USA

Received 6 May 2003; received in revised form 17 January 2004; accepted 26 February 2004

Available online 12 May 2004

Responsible Editor: J. Roberts
Abstract

A network service provider (NSP) operating a label-switched networks such as ATM or multi-protocol label

switching (MPLS) networks, sets up end-to-end bandwidth-guaranteed label-switched paths (LSPs) to satisfy the con-

nectivity requirements of its client networks. To make such a service highly available the NSP may setup one or more

backup LSPs for every active LSP. The backup LSPs are activated when the corresponding active LSP fails. Accordingly,

the problem of LSP routing with and without restoration backup has received some attention in the recent past.

In this paper, we investigate distributed algorithms for routing of end-to-end LSPs with backup restoration in the

context of label-switched networks. Specifically, we propose a new concept of the backup load distribution (BLD) matrix

that captures partial network state and eliminates the problems of bandwidth wastage, pessimistic link selection, and

bandwidth release ambiguity. We describe two new distributed routing algorithms that utilize the BLD matrix and

require a bounded amount of run time. We can realize these algorithms in the current Intenet architecture using the

OSPF extensions for quality-of-service (QoS) routing to exchange the proposed BLD matrix among peer routers/

switches. Our simulation results for realistic sample topologies show excellent (30–50%) improvement in the number of

rejected requests and 30–40% savings in the total bandwidth used for backup connections. We also show that although

the performance of our routing scheme is sensitive to the frequency of BLD matrix updates, performance degradation

resulting from stale state information is insignificant for typical update periods.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Multi protocol label switched (MPLS) networks; Restoration routing; QoS routing; Virtual private networks
qThis paper is an expanded and revised version of our IEEE ICNP2001, November 2001, paper.
* Corresponding author. Tel.: +1-732-949-5772; fax: +1-732-949-4513.

E-mail addresses: norden@dnrc.bell-labs.com (S. Norden), mbuddhikot@bell-labs.com (M.M. Buddhikot), mwl@zurich.ibm.com

(M. Waldvogel), suri@cs.ucsb.edu (S. Suri).
1 Part of the work reported here was undertaken during Samphel Norden’s summer internship in Bell Labs.
2 Marcel Waldvogel was with Washington University in St. Louis during the course of this research.
3 Prof. Subhash Suri was supported in part by NSF grants ANI 9813723 and CCR-9901958.

1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2004.02.015

mail to: norden@dnrc.bell-labs.com

198 S. Norden et al. / Computer Networks 46 (2004) 197–218
1. Introduction

The concept of label switching encompasses

optical networking technologies, such as wave-

length switching, and electronic packet switching
technologies, such as ATM and multi-protocol

Label Switching (MPLS). A network service pro-

vider (NSP) that operates a label-switched net-

work (LSN) sets up end-to-end label switched

paths (LSPs) to satisfy the connectivity require-

ments of its client networks. For these LSPs, the

NSP may guarantee certain quality-of-service

(QoS) attributes such as fixed bandwidth, delay, or
delay-jitter. Formally, an LSP request can be

characterized by a tuple hs; d; q1; q2; . . . ; qni, where
s; d are the source and destination address of the

client networks, and q1; q2; . . . ; qn are the QoS

requirements of the LSP. In practice only one QoS

metric, namely the bandwidth guarantee, has been

used. In this case the LSP request can be repre-

sented by a 3-tuple hs; d; bi, where b is the LSP
bandwidth. Each such LSP can be described by a

set of labels, l1; l2; . . . ; ln, one per switching hop.

Fig. 1 illustrates this for an MPLS packet-switched

network. Here, labels ðB;C;DÞ describe the LSP

along path ðL7; L9; L10Þ setup to satisfy request

hR1;R5; bi.
In MPLS networks, an LSP between s and d is a

simplex flow, i.e., packets flow in one direction
from s to d along a constrained routed path [1].

For the reverse traffic flow, an additional simplex

LSP must be computed and routed from d to s.
Clearly, the path from s to d can be different from

the path from d to s. Also, the amount of band-
Request
(R1, R5, b)

R1

R2 R3

R5

L5

L3

L4

R5

R6

L6

R4

L2

L1

L7

L9

L8

L10
L11

A

B

C

D

Fig. 1. Concept of label switching.
width reserved on each path can differ. This re-

quest model is often referred to as the pipe model

in the Virtual Private Network (VPN) literature

[1]. We will refer to this model and the corre-

sponding constrained path routing as the asym-

metric request model. The algorithms reported in
this paper assume this request model.

When uninterrupted network connectivity is

necessary, a client may use LSPs from multiple

NSPs to deal with occasional NSP failures. How-

ever, this requires multiple physical connections

(ports) to different NSPs. To avoid this, an NSP

may provide an enhanced service with additional

guarantees: for every client request hs; d; bi, the
NSP sets up two LSPs between source s and des-

tination d: a primary LSP that is used under nor-

mal circumstances, and a backup LSP that is

activated in the event of disruption of the primary

path due to link or switch failures. The mechanism

used for detection of path disruption and switch-

ing over to the backup path has two variants: (a)

Protection: whereby on link failure, endpoints
automatically switch to a pre-configured backup

path; (b) Restoration: whereby the backup path is

only configured on demand when the primary path

fails. Note that in both cases, resources are always

allocated on both primary and backup paths.

However, in the first case, the backup path is al-

ways active and always consumes resources. We

focus on the latter mechanism whereby backup
path restoration is performed to recover from

failures.

Restoration routing also comes in two distinct

flavors: (a) end-to-end path restoration [2,3]

whereby link failures on the primary path cause

an end-to-end backup path to be configured; (b)

local restoration [4,5] wherein each link on the

primary path is protected by means of backup
paths so that any link failure is treated locally for

fast restoration. In this paper, we focus on the

problem of end-to-end restoration routing and do

not consider the problem of local restoration

routing.

1.1. Overview of main ideas and contributions

In this section, we present the problem formu-

lation and illustrate the limitations of current

Geb=1
b

c

d

ea

b1

b2

Fcb=1

Fig. 2. Simple network for the overview of main ideas.

S. Norden et al. / Computer Networks 46 (2004) 197–218 199
mechanisms for backup restoration. All backup

restoration mechanisms use the following state

information in order to decide how to route

backup paths:

1. Fu;v: amount of bandwidth used on link ðu; vÞ by
all primary paths that use link ðu; vÞ.

2. Gu;v: amount of bandwidth used by all backup

paths that contain link ðu; vÞ.
3. Ru;v: residual capacity on the link ðu; vÞ defined

as Ru;v ¼ Cu;v � ðFu;v þ Gu;vÞ.

Henceforth, we will refer to this scenario as the

3-variable partial information (3VPI).
We describe a simple example of a 4-node

topology in Fig. 2 to illustrate the use of these

variables. Consider two requests r1 ¼ ha; b; 1i and
r2 ¼ ha; b; 1i. Let all links have capacity of 1 unit.

Let us consider primary paths p1 and p2 which use

the paths (La;c; Lc;b) and (La;d ; Ld;b), respectively. If

we assume that a single link fails at any given time

(see Section 2.2 for assumptions of fault models),
p1 and p2, which do not share any links, will not

fail simultaneously. This allows their backup paths

b1, b2 to share the same links (La;e; Le;b). In this

example, Fa;d ¼ Fa;c ¼ Fc;b ¼ Fd;b ¼ 1 unit, Ga;e ¼
Ge;b ¼ 1 unit. Also, residual capacity on all links

will be 0. Note that if p1 and p2 shared even a single

link, the backup paths for both must be necessarily

distinct and there can be no sharing of backup
paths between the two requests.
1

p1

p
2

b2

Fax =1

xy =2F

Ruv=0

Guv =2

m n

v

x

b

a

b

u

Fig. 3. Another example network fo
Now consider routing backup paths with only

the knowledge of F , G, and R for each link with a

more detailed example as shown in Fig. 3. Let us

now assume that all links except link Lu;v have

capacity 3 and Lu;v has capacity 2.
Consider two requests r1 ¼ ha; y; 1i received at

node a and r2 ¼ hb; y; 1i received at node b. The
primary path p1 ¼ ðLa;x; Lx;yÞ for r1 and p2 ¼
ðLb;x; Lx;yÞ for r2 share common link Lx;y . This im-

plies that the load on La;x and Lb;x due to primary

paths is 1 (Fa;x ¼ Fb;x ¼ 1) unit, whereas on link Lx;y

it is 2 units (Fx;y ¼ 2). Furthermore, r1 uses backup
y

x y

u v

Primary

Backup

r the overview of main ideas.

200 S. Norden et al. / Computer Networks 46 (2004) 197–218
path b1 ¼ ðLa;m, Lm;n, Ln;yÞ and request r2 uses

backup path b2 ¼ ðLb;u, Lu;v, Lv;y).

When node b computes backup path for r2, it is
unaware that r1 does not use Lu;v in its backup

path. In absence of such knowledge of the distri-

bution of the bandwidth on Lx;y , the coarse gran-
ularity or the scalar nature of Fx;y forces node b to

backup entire load on Lx;y on Lu;v. This implies that

the backup bandwidth used on Lu;v (Gu;v ¼ 2), even

though r1 uses Lm;n for backup and not Lu;v. The

inaccurate nature of such a model will cause the

residual capacity on Lu;v to be 0 (Ru;v ¼ 0), even

though there is free shareable capacity of 1 unit on

Lu;v that can be used for routing backup paths.
This term which is described in more detail in

Section 4.2 refers to the real amount of residual

capacity that is not expressed in the coarse-grain

Gu;v parameter. Thus, if a new request r3 needs to

be routed from a to y and uses Lx;y on its primary

path, it will not be able to use Lu;v as its backup

path since the residual capacity will appear to be

insufficient. This is just one of the drawbacks of
using such coarse-grain parameters. Section 3

discusses this problem, formally termed as Pri-

mary-to-Backup Link Wastage, and other limita-

tion called Bandwidth Release Ambiguity in more

detail.

In this paper, we propose the new concept of a

Backup Load Distribution (BLD) matrix BM that

captures partial network state, yet exposes suffi-
cient information to minimize bandwidth wastage

and maximize backup path sharing. We describe

two new distributed routing algorithms that utilize

the BLD matrix and run in bounded time. The

proposed BLD matrix BM can be exchanged

among peer routers using the OSPF extensions for

QoS routing [6]. This allows our algorithms to be

realized in the existing Internet architecture. Our
simulation results for sample network topologies

show a 50% reduction in the number of rejected

requests and 30–40% savings in total bandwidth

used for backup. We also evaluate the overhead of

communicating the BLD matrix in a distributed

implementation and study the effect of stale state

information as the BLD update frequency is

changed. We show that although the performance
of routing schemes is sensitive to the frequency of

state updates, for practical and reasonable values
of update frequencies the performance degrada-

tion is minimal. The BLD matrix concept, our

algorithms, and our simulation experiments apply

to any generic label-switching technology and

hence can be used in optical path routing in WDM

networks as well as Virtual Path Routing in ATM
networks.

1.2. Outline of the paper

Section 2 presents background material for the

discussions in the paper. Section 3 describes in

detail the limitations of using partial network state

information consisting of only three state variables
per link, namely residual bandwidth, bandwidth for

primary paths, and bandwidth for backup paths.

The concept of the BLD matrix that eliminates

these limitations is introduced in Section 4. In

Section 5, we describe two new algorithms that use

the BLD matrix, namely (1) enhanced widest

shortest path first (E-WSPF), and (2) enumera-

tion-based WSPF (ENUM-WSPF). Section 6 de-
scribes simulation experiments using realistic

network topologies, and finally, Section 7 presents

conclusions.
2. Background

In this section, we will present relevant back-
ground material on various aspects of the problem

such as characteristics of routing algorithms, fault

model, concept of backup path sharing, and the

basics of the primary path routing algorithm

known as widest shortest path first (WSPF) [7].

2.1. Characteristics of routing algorithms

The important characteristics of routing algo-

rithms that we need to consider are as follows.

Online routing. This property requires that an

LSP request can be routed based on complete or

partial knowledge of the current state of the net-

work only. Accepting a current request that gen-

erates a small revenue may potentially block a

future request that could have generated a much
larger revenue. In contrast, offline routing is based

on a priori knowledge of all LSP requests, en-

S. Norden et al. / Computer Networks 46 (2004) 197–218 201
abling the revenue maximization by rejection of

selected requests. Clearly, during network opera-

tion, an offline routing problem can be solved

periodically to optimize the LSP routing and

available bandwidth, which is outside the scope of

this paper.
Distributed vs. centralized implementation.

Route computation and management can be per-

formed either (1) at a centralized route server or

(2) in a distributed fashion at each router/switch.

In the centralized approach (Fig. 4(a)), each

router forwards the incoming request for a new

LSP to a well-known route server, which then

computes and returns the route. In this approach,
the route server has full information on the net-

work state at its disposal for the route computa-

tion.

In the distributed implementation model (Fig.

4(b)), a router computes routes for an LSP request

based on its ‘‘local’’ view of the network state

constructed from link-state updates sent by net-

work nodes. In this case, the overhead of distrib-
uting per-path information whenever new paths

are established or old ones removed can be pro-

hibitively high. Therefore distributed route com-
R1

R2 R3

R5

L5

L3

L4

R5

R6

L6

R4

L2

L1

L7

L9

L8

L10
L11

Route
Server

Request
(R1, R5, b)

1

2 4
3

4

4

R1

R2 R3

R5

L

L3

L4

R6

L6

R4

L2

L1

L7

L9

L8

L1
L11

Request
(R1, R5, b)

1

2

2

(a)

(b)

Fig. 4. Routing implementation: (a) centralized routin
putations often use only link specific state instead

of path-specific state, resulting in sub-optimal

performance compared to their centralized coun-

terpart.

For the ease of deployment, it is necessary that

any new state information be collected and dis-
seminated using existing routing protocols such as

OSPF (Fig. 5). The existing OSPF protocol dis-

seminates topology and link state such as up, down

status. The OSPF path-computation algorithm

uses this information to construct the route

table for forwarding the best-effort traffic. New

extensions to OSPF have been proposed to dis-

tribute additional link state such as residual link
bandwidth, delay etc. required for QoS routing

[7,8]. The LSP routing algorithms will use such

additional state information to construct MPLS

paths and corresponding per-port label-swapping

table.

2.2. Fault model

In the context of protection or restoration path

routing, it is important to consider two kinds of

failures, namely link failures and router failures. A
Step 1: Request rxed by R1
Step 2: Request forwarded to route server
Step 3: Route server computes route

(R1, R2, R3, R5) and returns the
route

Step 4: The route is signaled

5

R5

0

Step 1: Request rxed by R1
Step 2: Router R1 computes route
 (R1, R3, R5) and signals the
 path

g using route server and (b) distributed routing.

Routing State
Distributed by OSPF

OSPF Routes
for Best Effort

MPLS
Tunnel Routing

Algo

Fig. 5. Distributed routing algorithm.

202 S. Norden et al. / Computer Networks 46 (2004) 197–218
common fault model for link failures assumed in

literature and justified by network measurements

[9,10] is that at any given time only one link in the

network fails. In other words, in the event of a link
failure, no other link fails until the failed link is

restored, and probability of two or more links

failing at the same time is very small. In our work,

we use this link failure model to devise our algo-

rithms.

Modern IP routers still do not support the

so-called five-nines (99.999%) or seven-nines

(99.99999%) reliability common in telephony
switches. Therefore, router failures may be more

frequent than link failures. An ingenious way to

model router failure is based on a technique often

used in distributed system to model node failures:

a router can be represented by two nodes con-

nected by a link with infinite capacity. The router

failure is then simulated by a failure of this internal

link.

2.3. Backup-path sharing

Given the typical fault model of single-link

failure, we are guaranteed that in the event of a

link failure, if two paths are link disjoint, they will

not fail simultaneously. As a result, backup paths

for two link-disjoint primary paths can share
capacities on their backup links because at most

one of the backup paths will be active at any one

time. Therefore, if two LSPs, each with a band-

width requirement of b units, are routed on link-

disjoint paths, their backup can be provided by a

single path with capacity b. Such bandwidth

sharing allows one of the two primary paths to use

the backup free of cost. This suggests that backup-
path routing can exploit the fault model to maxi-

mize backup-path sharing.
The amount of sharing that can be achieved by

an online algorithm over a series of N requests

depends on the amount of state information at its

disposal. A limited amount of state information

can lead to a pessimistic link selection and in-

creased request rejection.

2.4. Widest open shortest path first

The widest shortest path first (WSPF) algo-

rithm was first proposed by Apostolopoulos et al.

[7] for the routing of bandwidth-guaranteed paths.

As our restoration routing schemes use WSPF as

an integral component, we will present it briefly.
The drawback of using the traditional shortest

path first (SPF) algorithm is that it may yield an

optimum solution for a single request, but it can

lead to high request rejection and low network

utilization over a span of N requests [7,11,12]. The

WSPF algorithm remedies this problem by select-

ing a shortest path with maximum (‘‘widest’’)

residual capacity on its component links. In order
to minimize the overhead of computing the

shortest path and of distributing the state infor-

mation in a distributed implementation, Aposto-

lopoulos et al. propose two improvements.

Quantization. Quantize the bandwidth on a link

into a fixed set of ranges or bins. When a new LSP

request is received, the request is quantized to a

fixed bin and can be satisfied by selecting a path
with links that belong to that or a higher bin.

Pre-computation. For each quantization level or

bin, compute a SPF tree from every source edge

router to all destination edge routers.

Fig. 6 illustrates these concepts. The SPF tree

essentially records the shortest paths from a source

to all egress nodes. Note that every time the

residual bandwidth on a link changes a quantiza-
tion level, the SPF trees for the old and new levels

need to be recomputed. The complexity of the

WSPF pre-computation for k bandwidth levels in

a network of n nodes and m links is Oðkmn log nÞ in
the worst case.

A drawback of WSPF is that it does not take

the knowledge of the nature of traffic between in-

gress–egress pairs into account. New primary path
routing schemes such Minimum Interference

Routing Algorithm (MIRA) [11,13] and Profile-

C1

C2

C3

C4

CN

CN-1

Min-hop SPF
Tree0

New Req: C3 < b < C4

Fig. 6. WSPF data structures.

LPPrimary i j

LBBackup u v

r1(b1)= 5

r3(b3)= 12
r2(b2)= 10

GLB = 28

P1

P3

P2
rnew(bnew)= 33

Fig. 7. Primary-to-backup link wastage.

S. Norden et al. / Computer Networks 46 (2004) 197–218 203
Based Routing (PBR) [12] attempt to address this

limitation and have reported better performance.

Nevertheless, we remained with WSPF, as PBR is

not well suited to our distributed approach and we

felt the simplicity of WSPF helped us better

understand the impact of changes and will dis-
tracted less from the our main focus of primary-

backup routing.
3. Limitations of using 3VPI partial network state

In the following, we show that the use of three

state variables (RL; FL;GL) per link L leads to two
problems: (1) primary-to-backup link wastage

during request admission and (2) bandwidth release

during request teardown.

3.1. Primary-to-backup link wastage

We illustrate this concept with an example in

Fig. 7. Consider link LP between nodes i, j. Three
existing primary paths P1; P2; P3 routed for requests

r1; r2; r3 with bandwidth requirements b1 ¼ 5,

b2 ¼ 10, b3 ¼ 12 use this link. This results in a load

of FLP ¼ 27 units due to the primary path. Let us

assume that the new request rnew to be routed on

LP requires bnew ¼ 33 units of bandwidth. The

backup-path routing is trying to evaluate the

suitability of link LB between nodes u, v as a
member of the backup path. Let us further assume

that only request r1 uses link LB ¼ ðu; vÞ on its

backup path. Also, let the current load on LB in-

duced by backup paths be GLB ¼ 28 units and the

residual capacity RLB ¼ 12.
First consider the use of complete network state

information. The routing algorithm knows that of

the primary-path load FLP only the primary path
for r1 is backed up on a path that uses link LB.

Therefore, out of GLB ¼ 28, only five units are in-

duced by link LP and an extra 23 units of band-

width already reserved are available for backing

up the new request. Because RLB ¼ 12 > ððbnew ¼
33Þ � 23Þ ¼ 10, the complete-information case will

allow the selection of link LB in the backup path.

Now consider the partial-information scenario.
In contrast, only the absolute FLP ;GLB ;RLB values

are known, and the algorithm does not know the

distribution of FLP on link LB. This forces a pessi-

mistic assumption that in the event of failure of

link LP , not b1 ¼ 5 but b1;2;3 ¼ b1 þ b2 þ b3 ¼ 27

units may need to be backed up on LB. Clearly, the

sum of the sharable backup bandwidth and the

residual capacity, ðGLB �b1;2;3ÞþRLB ¼ðð28�27Þþ
12Þ ¼ 13, is less than the new request size

bnew ¼ 33, and therefore, LB will not be selected as

a potential link in the backup path. In other

words, lack of additional information can lead to

assuming that the subgraph available to route the

backup is disconnected. This will then cause the

request to be rejected. We call this phenomena,

which results from pessimistic link selection and
leads to reduced bandwidth sharing, and increased

request rejection, as primary-to-backup link wast-

age.

3.2. Ambiguity in bandwidth release

Fig. 8 illustrates an example of backup band-

width release ambiguity. In this network, router a
receives the first path request r1 ¼ ha; k; 10i and

c

B1

d

b

a

e

g ef

i

k

h

P1 = 10

P2 = 6

B2

r2 = <b, e, 6>

r1 = <a, k, 10>

Ggf = 10

P1 = 10

P2 = 6

L1

L2 L3 L4

L5

L6

L7

L8

L9

L10

L11

L12

L13

Fig. 8. Ambiguity in bandwidth release during request tear-

down.

204 S. Norden et al. / Computer Networks 46 (2004) 197–218
routes primary path P1 ¼ ðL5; L6; L7Þ and backup
path B1 ¼ ðL8; L3; L9Þ. It reserves 10 units of

bandwidth on both paths. The router b receives the
second request, r2 ¼ hb; e; 6i and computes pri-

mary path P2 ¼ ðL13; L12; L11Þ and backup path

B2 ¼ ðL2; L3;L4Þ. Note that backup paths B1 and B2

share link L3. As P1 and P2 do not fail simulta-

neously, r2 concludes that 10 units of backup

bandwidth on L3 can be used as free bandwidth for
B2 and therefore does not reserve additional

bandwidth on L3 for backup.

When router a tears down request r1, tearing
down the primary part (P1) is straightforward, but
terminating backup path B1 is problematic. Spe-

cifically, router a faces ambiguity in deciding how

much bandwidth to release on link L3. When B1

was set up, a reserved 10 units, 6 units of which are
now shared by B2. However, as router a has no

path-specific knowledge, it does not know that

path B2 shares link L3. In this case, a cannot release
the right amount of bandwidth without additional

knowledge. We call this limitation imposed by

using only three state variables for path routing

the bandwidth release ambiguity.

In the following, we show how primary-to-

backup bandwidth wastage and bandwidth release

ambiguity can be averted using limited additional

state.
4. Backup-path routing using the backup load

distribution matrix

In this section, we describe a new form of state

information called the Backup Load Distribution
(BLD) matrix BM based on the concept of backup

sharing [2] and illustrate how it can be employed to

achieve superior backup-path sharing.
4.1. The BLD matrix

Given a network with N links, each router

maintains a N � N BLD matrix BM. If the pri-

mary load Fj on link j is B units, entries BMi;j,

16 i6N , j 6¼ i, record which fraction of B is
backed up on link i. Fig. 9 illustrates this concept

with an example network having eight links and

four primary paths P1, P2, P3, P4 with bandwidth

requirements of 10, 8, 12, 6 units. The corre-

sponding backup paths B1, B2, B3, B4 are also

illustrated. Fig. 9 also lists four vectors maintained

by each network node:

1. capacity vector C that records the link capaci-

ties;

2. vector F that records the load induced on each

link by primary paths;

3. vector G that records the load induced on each

link by the backup paths, and

4. vector R that records the residual capacity on

each link.

Consider link L4. Primary paths P2, P3, P4 use

this link, and therefore its primary load is

FL4 ¼ 8þ 12þ 6 ¼ 26 units. The corresponding

backup paths are B2 ¼ ðL1; L2Þ, B3 ¼ ðL1; L2Þ, and
B4 ¼ ðL1; L2; L3Þ. As the primary paths are not link

disjoint, the backup load on the component links

evaluates to GL1 ¼ G1 ¼ 26, GL2 ¼ G2 ¼ 26, GL3 ¼
G3 ¼ 6.

We can now see that out of FL4 ¼ 26 units of

primary load on L4, 8þ 12þ 6 ¼ 26 units are

backed up on L1 and L2, whereas six units are

backed up on L3. As per the definition the BLD

matrix, this is recorded as BM1;4 ¼ 26;BM2;4 ¼
26;BM3;4 ¼ 6.

Note that for row 2, max8j BM2;j ¼ 26 repre-
sents the maximum backup load on link L2 in-

duced by any link in the network. In general, for

any row i, max8j BMi;j represents the maximum

backup load induced on link i by all other links.

Clearly, for any link i, max8j BMi;j 6Gi. Note fur-

L1 L2 L3 L4 L5 L6 L7 L8

F = [10 8 26 8 12]18 610

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0

0

0

0

0

0

0

10

10

10

10

10

10

8

8 26

26

6

8

8

12

12

18

18

6

6

6

B1

B2

B3

B4

3

P1 = 10,P2 = 8, P3 = 12, P4= 6

L1

L2 L3

L7

L4
L5

L6

P1

P3

P41

4

L8

P2

Backup
Links

Capacity C = [50, 50, 150, 150, 50, 50, 50, 150]

Primary Load F = [10, 10, 8, 26, 18, 6, 8, 12], max F = 26

Backup Load G = [26, 26, 6, 10, 10, 0, 0, 10]
Residual Capacity R = [14, 14, 136, 114, 22, 44, 42, 128]

Fig. 9. Example of a BLD matrix BM.

S. Norden et al. / Computer Networks 46 (2004) 197–218 205
ther that if the entries in row i are sorted in

decreasing order, we can identify links that induce

successively smaller amounts of backup load on

link i. This knowledge helps in answering ques-

tions such as (1) which links induce the most

backup load on link i, or (2) out of N links, which

links induce 50% of backup load on i.
The primary-to-backup link wastage described

earlier is avoided by use of the BLD matrix. For

the example shown in Fig. 7, BMLB;LP would be 5 as

only request r1 ¼ 5 that uses Lp is backed up on LB,

and thus avoid the pessimistic assumption that

entire primary load on Lp may be backed up on LB.

Similarly, the bandwidth release ambiguity can

be eliminated using the BLD matrix. In Fig. 8,

when router a needs to release bandwidth on link
L3, it recalls that when the backup for request r1
was routed using L3, 10 units of bandwidth were

reserved. It consults the BM row corresponding to

link L3, where each column lists which fraction of

the primary path load F on link Li, i 6¼ 3, is backed

up on L3. In our example, BML3;L13 ¼ BML3;L12 ¼
BML3;L11 ¼ 6, and BML3;L5 ¼ BML3;L6 ¼ BML3;L7 ¼
10. In this case, router a concludes that primary
paths routed through L13, L12, L11 use up to 6 units

of backup reservation on link L3. Therefore, even

though router a reserved 10 units of backup

bandwidth on L3, it releases only
min

BW reserved on L3 on backup

for request r1; ðaÞ
ðGL3 �maxj 62ðL11;L12;L13Þ BML3;jÞ; ðbÞ

8<
: ð1Þ

which is minð10; ð10� 6ÞÞ ¼ 4 units. In general

terms, consider a request r with primary path P ,
and B such that amount X was reserved on link j
in backup path when B was routed. Then, the

bandwidth released on link j when request r is

removed is given as

min
X ;
ðGj �maxi62P BMj;iÞ:

�
ð2Þ
4.2. Freely shareable bandwidth

In the following, we introduce the concept of
freely shareable bandwidth on a link and show how

the use of the BLD matrix allows its accurate

computation. Consider the example network in

Fig. 9 with associated BLD matrix BM and the F,

G, and R vectors. Fig. 10 shows a snapshot of this

network in which in response to a new LSP request

rnew, a candidate primary path ðL5; L8Þ has been

routed but not reserved and ðL4; L1; L2Þ is under
consideration as a backup path candidate. We can

see from vector G (Fig. 9) that the maximum

backup load induced on ðL4; L1; L2Þ is ð10; 26; 26Þ.

P1 = 10, P2 = 8, P3 = 12, P4= 6

L1

L2 L3

L7

L4
L5

L6

4

L8

Primary

L1

L2

L4

Backup

Fig. 10. Free bandwidth on a link available for backup sharing.

206 S. Norden et al. / Computer Networks 46 (2004) 197–218
Let us take a closer look at link L1. From

the BLD matrix, we know that the backup load

induced by links in candidate primary path,

namely ðL5; L8Þ on L1, is ðBM1;5, BM1;8Þ ¼ ð18; 12Þ.
Accordingly, a maximum 18 out of 26 units of
backup reserved on L1 will be required for backing

up the primary load on ðL5; L8Þ even before the

new request rnew is admitted. In other words, there

are 8 extra units of backup bandwidth reserved for

backing up some other links. If the new request

requires fewer than 8 units of bandwidth, then no

extra bandwidth needs to be reserved on link L1 in

the candidate backup path. We call these 8 units of
bandwidth on link L1 the freely shareable band-

width.

Formally, given a primary path P , the freely

shareable (FR) bandwidth available on a candi-

date backup link L is defined as

FRL ¼ Gl �max
i2P

BML;i: ð3Þ

In our example, for backup path ðL4; L1; L2Þ,
FRL4 ¼ 10, FRL1 ¼ 8, FRL2 ¼ 6, and therefore, if the

request size bnew is 6 units or fewer, no bandwidth

needs to be reserved on the candidate backup path.
As shown, the BLD matrix BM allows more

accurate computation of freely shareable backup

bandwidth on a link.

4.3. Modeling the link cost

The backup-path computation procedure

should favor links that have large freely shareable
backup bandwidth. From the perspective of

backup routing, every link has two kinds of

bandwidth available:
Freely shareable bandwidth (FR), which is com-

pletely shareable and requires no extra resource

reservation.

Residual bandwidth (R), i.e., the actual capacity

left unused on the link.

If the LSP request size b > FRl, then b� FRl

units of bandwidth must be allocated on the link to

account for the worst-case backup load on the

link. If the residual bandwidth Rl falls short of

b� FRl (i.e. b� FRl > Rl), then the link l cannot

be used on the backup path and is called an

‘‘infeasible link’’. Given this, the cost of using link l
on a backup path consists of two parts: (1) the cost

of using the free bandwidth on the link and (2) the
cost of using the residual bandwidth on the link.

The per-link cost is then as follows:
wl ¼

CF ðFRlÞ; if b6FRl;

CF ðFRlÞ þ CRðb� FRlÞ;
if FRl < b6FRl þ Rl;

1; if FRl þ Rl < b ði:e:; l is infeasibleÞ;

8>>>><
>>>>:

ð4Þ

where CF and CR are cost metric functions selected
in such a way that links with high residual

capacity Rl are preferred. In other words, if

Rl1 < Rl2 , then CRl1
> CRl2

. One such function is

CRl ¼ að1� Rl=RmaxÞp, where Rmax ¼ maxl Rl.

Similarly, if Fmax ¼ maxl F , then CFl ¼ cð1� Fl=
FmaxÞq, satisfies the constraint that if FRl1 < FRl2 ,

then CFl1
> CFl2

.

For primary-path routing, the ‘‘free band-
width’’ does not play a role as the bandwidth

always has to be reserved and no sharing is pos-

sible. The cost in this case is therefore only the cost

incurred in using the residual bandwidth.

Given this cost function for a link, our routing

algorithms attempt to find backup paths with

minimum cost, where the cost of the path is the

sum of the costs of the component links.
4.4. Implementation overhead

Whenever a node routes new primary and

backup connections, it recomputes the BLD ma-

trix entries. Frequent addition or deletion of paths

S. Norden et al. / Computer Networks 46 (2004) 197–218 207
changes the matrix entries and requires state ex-

change between network nodes. For a network of

fixed size, the size of the BLD matrix and therefore

the maximum size of state exchanged between

network nodes is fixed and independent of the

number of paths. In other words, the BLD matrix
captures only the link state induced by paths but

no path-specific state. If the state exchange is

completely distributed and copies of the BLD

matrix at different nodes are inconsistent, two or

more nodes may end up selecting paths consisting

of links that do not have sufficient capacity to

accommodate their requests. In this case, the res-

ervation attempt of some of the nodes will fail and
their requests will be rejected. The BLD matrix

entries will be consistent again after subsequent

state updates are processed.

Consider the scenario of a distributed global

exchange of the BLD matrix among all routers in

the networks: If there are M routers and N links,

the BLD matrix is N 2 in size. A naive exchange

of the BM among M routers will require the ex-
change ofMðM � 1ÞN 2 entries. However, note that

when a router routes a primary path P of length l
links and backup path B of k links, the BM entries

corresponding to only l links in path P change.

Therefore, instead of N 2 entries, only entries in l
columns can change, maximum lN values. In most

cases, this can be even simplified to lk, as l; k N ,

the update overhead is reduced to � MðM � 1Þlk.
Also, it is sufficient to send updates only to the

immediate neighbors instead of to all M � 1 other

nodes. If the out-degree of network nodes is lim-

ited to a maximum of p nodes, then total BLD-

matrix-exchange cost is bounded by Mplk. As

p M , the reduction is significant. In addition, to

reduce the frequency of the updates, we can send

an update only when there is a significant change
to the column-vector entries. In practice, to reduce

the size of the updates, we can compress the col-

umn vector by only sending entries with non-zero

values along with a preamble indicating the links

to be updated. Note that as for other link-state

information, we can also adopt the existing policy

of triggered updates.

An alternative centralized scheme that can
minimize the BLD-matrix-distribution overhead

and resulting inconsistencies uses repository nodes.
The routers dynamically elect one or more among

themselves to act as repositories for the BLD ma-

trix state and to serve it to other network nodes. In

the event of BLD matrix changes, each node reg-

isters its changes with the repository nodes and is

also notified of changes made by others. The rou-
ters can periodically or upon the arrival of a path

setup or teardown request, query and download

the BLD matrix.

In the distributed exchange scheme, the well-

known link-state routing protocol OSPF [7,14] can

be used to propagate BLD matrix entries. The

changes to OSPF are not discussed here, as they

are analogous to the descriptions in [7,8], to which
the reader is referred for further details.
5. Routing algorithms

In this section, we will describe two types of

algorithms.

Two-step algorithm. This algorithm first com-
putes a primary path using one of the many

available algorithms such as MIRA [11], PBR [12],

or WSPF [7]. For this candidate primary path, the

algorithm then computes a least cost backup path.

Iterative or enumeration-based algorithm. This

algorithm enumerates pairs of candidate primary

and backup paths, and picks the pair with smallest

joint cost. It uses the WSPF heuristic and associ-
ated data structures, and is therefore less generic.

Both algorithms use F, G, R variables per link

and the BLD matrix, and run in bounded amount

of time. Note that both our algorithms can be

deployed alongside OSPF for best-effort traffic and

WSPF for primary path QoS routing.

5.1. Generic two step algorithm

The basic pseudo-code for this algorithm that

can be implemented in a route server or in a dis-

tributed fashion at each switch is as shown in the

algorithm in Table 1:

The first step in this algorithm (line 10) com-

putes the primary path P using an algorithm such

as MIRA, PBR, or WSPF. If this step fails, the
request is rejected (line 12). Because the backup

and primary paths must be link disjoint, all links in

Table 1

Generic two-step algorithm

00:var

01: T: Tree; (* Tree data structure *)

02: G, G0: NetworkGraph; (* Network Graph data structure *)

03: P, B: Path; (* Path data structure *)

04: req: Request3Tuple; (* 3-tuple:(src, dst, bw) *)

05: cost: Integer;

06:procedure GenericTwoStep(s, d:node; b:integer);

07:begin

08:req.src:¼ s; req.dst:¼ d, req.bw:¼ b;

09:(* Primary path computation *)

10:GetPrimaryPath (G, req, P); (* Procedure uses preferred *)

(* primary path routing scheme *)

11:if P¼NIL then begin

12: writeln(00No Primary Path found00);
13: exit;

14:end;

(* Backup path computation *)

15:G0 :¼ RemoveLinks(G, P); (* Remove primary path links from G. *)

(* G0 contains the resulting graph *)

16:RemoveInfeasibleLinks(G0, BM, P); (* Remove links with *)

(* insufficient bandwidth from G0 *)

17:AssignCostW(G0, BM, P); (* Procedure to compute w_l induced)

(* by path prm on all links *)

18:B:¼ SPFBackUpPath(G0); (* Procedure to compute backup *)

(* using shortest-path-first *)

19:if (B¼NIL) then begin

20: writeln(00No backup path found, Request Rejected00);
21: exit;

22:end;

23:UpdateNetworkState(G, prm, bkp); (* Change the network state *)

(* after new paths are routed *)

24:end;

208 S. Norden et al. / Computer Networks 46 (2004) 197–218
P are removed from the graph on which backup
path is routed (line 15). Using the BLD matrix and

Eq. (3), the algorithm then computes the FRl on

each link in the graph for the candidate primary

path. Next, the algorithm removes all infeasible

links from the graph and computes new graph G0

(line 16). Using the cost metric defined in Eq. (4), it

assigns a cost wl to each link l and computes the

backup path using the shortest path algorithm on
graph G0 (lines 17,18). If no path is found, the path

request is rejected (line 19). Otherwise, an attempt

is made to reserve the resources for primary and

backup paths using protocols such as RSVP [15] or

LDP [16]. If reservation succeeds, the algorithm

updates the path-related link-state variables and

corresponding BM entries. It then sends state-
change packets to the appropriate neighbors (line
24). If the reservation fails, the request is rejected.

We evaluated a specific instantiation of this

generic algorithm using the WSPF algorithm for

primary-path computation. We call this algorithm

the Enhanced Widest Shortest Path first (EWSPF).

The pseudo-code for the exact algorithm that uses

the pre-computed WSPF data structures is illus-

trated in Table 2.
Steps 15, 16, and 17 in Table 1 require OðmÞ

time. Step 10 involves computation of a shortest

path using Dijkstra’s algorithm, taking Oðm log nÞ
time. Therefore, the worst case complexity of this

algorithm is Oðkmþ m log nÞ ¼ Oðm log nÞ, where
n is the number of nodes and m is the number of

links or edges in the network graph. Recall that k

Table 2

Enhanced WSPF

00:var

01: T: Tree; (* Tree data structure *)

02: G, G0: NetworkGraph; (* Network Graph data structure *)

03: P, B, BestP, BestB: Path; (* Path data structure *)

04: req: Request3Tuple; (* 3-tuple:(src, dst, bw) *)

05: bin, cost, mincost: integer;

06:procedure EnhancedWSPF(s, d:node; b:integer);

07:begin

08:req.src:¼ s; req.dst:¼ d; req.bw:¼ b; mincost:¼ 1;

09:bin:¼ Quantize(b); (* Quantize size to find bin *)

(* this request corresponds to *)

10:for lvl:¼ bin to k do (* Search this and larger-sized bins *)

11: (* Do primary path computation *)

12: T:¼ GetSPFTree(lvl, s); (* SPF tree rooted at s at level lvl *)

13: P:¼ GetPrimaryPath(T, d); (* Get path to d from s in T *)

14: if P¼NIL then continue; (* No luck, try next *)

15: G0 :¼ RemoveLinks(G, P); (* Remove primary path links *)

16: (* Do Backup path computation *)

17: AssignCostW(G0, BM, P); (* Assign wl induced by P on all *)

18: (* links l.Use BLD matrix *)

19: B:¼ SPF(G0, s, d); (* Run SPF on G 0 to get backup path B *)

20: if B¼NIL then continue;

21: cost:¼ JointCost(P, B); (* Joint cost of both paths *)

22: if mincost>cost then

23: begin

24: BestP:¼ P; (* Current best primary path *)

25: BestB:¼ B; (* Current best backup path *)

26: end;

27:end;

28:UpdateLinkState(G, P, B); (* Update residual bandwidth rl *)

29: (* forward and backward load *)

30:UpdateBLDMatrix(G, BM); (* Update BLD matrix *)

31:SendOSPFUpdates(); (* Send OSPF updates if required *)

32:end;

S. Norden et al. / Computer Networks 46 (2004) 197–218 209
is the number of different bandwidth levels and is
generally a small constant number.

5.2. Enumeration-based algorithm (ENUM-

WSPF)

This algorithm enumerates candidate pairs of

primary and backup paths using pre-computed

data structures in the WSPF implementation and
therefore is called ENUM-WSPF. The basic idea in

this algorithm is the following: Given a path re-

quest hs; d; bi, find the bandwidth bin the request is

quantized to (line 9 in Table 3). Using the SPF trees

stored in the bin bin, find the shortest path from s
to d (lines 11 and 12). Treat this path as a hypo-
thetical backup path and find a primary path that
induces the least cost wl on this path by searching

the SPF trees in all other bins. The search is

accomplished by the inner for loop (lines 14–27).

When searching for the primary path, it is likely

that, once links for the backup path have been re-

moved, the tree at a given bin may be disconnected

for the required s and d pair (line 18). In this case, a

more expensive shortest path computation is done
on the original graph (lines 19 and 20). Using the

BLD matrix, Eqs. (3) and (4), and the cost of pri-

mary path, the joint cost of the ðP ;BÞ pair is

computed (lines 22 and 23) and compared to the

current best pair (lines 24–27). At the end of the

inner for loop (line 28), the best primary path for

Table 3

ENUM-WSPF

00:var

01: T: Tree; (* Tree data structure *)

02: G, G0: NetworkGraph; (* Network Graph data structure *)

03: P, B, BestP, BestP: Path; (* Path data structure *)

04: req: Request3Tuple; (* 3-tuple:(src,dst,bw) *)

05: bin, cost, mincost: integer;

06:procedure ENUM_WSPF(s, d:node; b:integer);

07:begin

08:req.src:¼ s; req.dst:¼ d; req.bw:¼ b; mincost:¼ 1;

09:bin:¼ Quantize(b); (* Quantize size to find bin *)

(* this request corresponds to *)

10:for lvl:¼ bin to k do begin

11: T:¼ GetSPFTree(lvl, s); (* SPF tree rooted at s in T *)

12: B:¼ GetPath(T, d); (* Candidate backup path in T *)

13: if B¼NIL then continue; (* None possible, try next *)

14: for j:¼ 1 to min(k, lvl-1) do begin

15: T:¼ GetSPFTree(j, s); (* SPF tree rooted at s in level j *)

16: T0 :¼ RemoveLinks(T, B); (* Remove links on backup path from T *)

17: P:¼ GetPrimaryPath(T0, d); (* primary path in T0 *)

18: if P¼NIL then begin (* Oops! T0 is disconnected.*)

19: G0 :¼ RemoveLinks(G, B); (* Remove backup path links from G *)

20: P:¼ SPF(G0); (* Find alternate shortest path *)

(* as primary path in G 0 *)

21: end;

22: AssignCostW(B, BM, P); (* Cost induced by prm on bkp *)

23: cost:¼ JointCost(P,B); (* Joint cost of primary and backup *)

24: if mincost>cost then begin

25: BestP:¼ P; (* Current best primary path *)

26: BestB:¼ B; (* Current best backup path *)

27: end;

28: end;

29:end;

30:end;

210 S. Norden et al. / Computer Networks 46 (2004) 197–218
the backup path from bin is selected. The process is

then repeated for every higher bin (bin6 lvl6 k)
(outer for loop, lines 10–29). Clearly, this approach

enumerates pairs of primary and backup paths and

selects the pair with least joint cost.
The complexity of this algorithm is ðkmn log nÞ

for pre-computation and Oðk2Þ for the cost com-

parison.
6. Simulation results

In this section, we describe simulations that
characterize the benefits of our proposed schemes.

We conducted two sets of experiments: (1) Exper-

iment Set I (EXPTSET-I) compares three different
schemes: EWSPF, ENUM-WSPF, and simple

shortest path first (SPF). We simulated two differ-

ent SPF schemes: (1) SPF-HOP: uses min-hop-

count as path metric and (2) SPF-RES: uses link

costs based on the residual capacity and computes
lowest cost path. Both SPF schemes compute two

independent paths: one used as primary and other

as backup and do not attempt to share backup

paths. (2) Experiment Set II (EXPTSET-II) com-

pares our EWSPF scheme with Kodialam et al.’s

scheme using data sets in their [2] paper.

6.1. Simulator details

We developed a discrete event simulator in C++

to conduct a detailed simulation study. We simu-

S. Norden et al. / Computer Networks 46 (2004) 197–218 211
lated only certain aspects of the control path in the

network and did not model the data path. Spe-

cifically, in the control path, we simulated the ar-

rival and departure of path requests and

dissemination of network state information. We

did not simulate any of the following: (1) actual
data traffic such as TCP/UDP/IP packet flows on

the routed primary path LSPs, (2) the link fault

events in response to which backup paths are

activated, (3) signaling protocols that detect and

propagate link faults, (4) or any other operational

aspects irrelevant to routing protocol algorithm.

Therefore, our simulator captures the network

state using network topology, routed primary,
backup paths, per-link F ;G;R variables and BLD

matrix.

In the following, we describe the network

topologies, traffic parameters, and performance

metrics used.

LSP Request Load. Table 4 shows the param-

eters used to run the experiments in EXPTSET-I.

We ran the experiments in EXPTSET-I by gener-
ating a given volume of requests (50,000 to

300,000) within a fixed simulation time (50,000

time units), effectively varying the LSP request

load on the network. LSP requests at each router

were modeled as Poisson arrivals, and the mean

inter-arrival time was computed based on the total

request volume during the simulation time. The

call-holding time was exponentially distributed
with a mean of 100 time units. The requests were

torn down after the appropriate holding time,

releasing resources for other new arrivals. The re-

quest bandwidth was varied using a uniform ran-
Table 4

Simulation parameters for EXPTSET-I

Property Values

Request (REQ) arrival Poisson at every router

Mean call holding time

(HT)

100 time units, exponentially

distributed

REQ volume (RV) 50,000–300,000

Simulation time (STT) Fixed 50,000 units

Maximum LSP REQ SZ

(LF)

2.5%, 10% of the link capacity

Mean REQ inter-arrival

time

Computed using RV and STT

Destination node selection Randomly distributed
dom variable with a maximum request size at 10%

of the link capacity. We did not simulate the BLD

and other state exchanges between the network

nodes and therefore, did not measure effects of

inconsistent state at the nodes. Note that in reality,

the request load at various nodes may not be
random and certain node pairs may see dispro-

portionate share of requests. However, no real-life

call traffic datasets are currently available in the

public domain and no well known methodology

exists to generate them synthetically. Given this,

we chose to use the LSP request load described

earlier.

For the experiments in EXPTSET-II, Kodialam
et al. supplied a modified version of the datasets

they had used in their paper [2]. Their dataset

contains 5 runs each with 100 demands. All de-

mands have infinite call duration: once they are

admitted, they do not terminate. The drawbacks of

this dataset are (a) the number of demands in the

dataset is too small and does not capture the sta-

tistical range required to achieve better averaging
of performance metrics; (b) also, unlike the dataset

in EXPTSET-I, the infinite connection-holding

time used in this dataset does not resemble real

network conditions, where connections are set up

and torn down.

Network Topologies. For EXPTSET-I, we used

the topology shown in Fig. 11 in two configura-

tions. The topology represents the Delaunay tri-
angulation for the 20 largest metropolitan areas in

the continental USA. The Delaunay triangulation
San Diego

 Francisco

Seattle

Los Angeles Phoenix

Denver

Dallas

Houston
Miami

Atlanta

St. Louis

Chicago
Detroit

Cleveland

DC

Philadelphia
NY

Boston

Minneapolis

Pittsburgh

Fig. 11. Metropolitan topology.

212 S. Norden et al. / Computer Networks 46 (2004) 197–218
has the feature that while it minimizes the number

of parallel paths between a pair of nodes, it also

provides redundant paths for failsafe routing when

a link goes down, thus always allowing an alter-

nate path [17,18]. All routers were randomly se-

lected as potential sources and destinations.

Homogeneous: In this case, all links in the net-

work are of the same capacity (OC-48) and all rou-

ters are identical.

Heterogeneous: Here, we simulated a network

consisting of a core with fast links that connects

with slower links to an access network. Here, the

thick links are OC-48 and the thin links are OC-12.

For the experiment set II (EXPTSET-II), to

compare our EWSP scheme with Kodialam et al.’s

scheme [2], we obtained the network topology

(Fig. 12) they used in their paper.

Quantizing the Link Bandwidth for WSPF. We

used the two bandwidth quantization schemes

(Fig. 6) in EWSPF and ENUM-WSPF schemes:
(1) Exponential quantization (EXP) used three

bandwidth levels of 0.01, 0.1, and 1.0 times the

maximum requested bandwidth. (2) Uniform

quantization (UNIFORM) used a more linear set

of six levels, which allows to distinguish between

0.05, 0.1, 0.3, 0.5, 0.7, and 1.0 times the maximum

requested bandwidth.
1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

S1

D2 D4

D1

S3

S4S2
D3

Fig. 12. Fifteen-node test topology from Lakshman et al. [2].
6.2. Performance metrics

We used following performance metrics to

compare the various algorithms:

• Fraction rejected (FR) is the fraction of requests

that were dropped.

• Total bandwidth saved fraction (TBSF) is the

fraction of total bandwidth saved when com-

pared to SPF-RES. It is defined as

TBSF ¼ TotalBWnewscheme � TotalBWSPF

TotalBWSPF

: ð5Þ

• Backup bandwidth saved fraction (BBSF) reflects

the fraction of backup bandwidth saved for a

given backup path by the new scheme compared
to the one used by SPF algorithms. It is defined as

BBSF ¼ BackupBWSPF � BackBWnewscheme

BackBWSPF

:

ð6Þ

Note this metric is different than TBSF which

compares EWSPF and ENUM-WSPF to SPF.

Here for a given scheme which picks a particular

backup path, we hypothetically compute the gains

of using the shared bandwidth over using an SPF
like scheme which reserves the full bandwidth even

on the backup path. This metric thus is suitable for

comparing EWSPF and ENUM-WSPF.

In EXPTSET-I, we measured both metrics,

whereas in EXPTSET-II we measured the fraction

rejected (FR) metric as we do not have values for

other metrics available from Kodialam et al. [2].

Note that one high level performance metric
that is of interest to the designer of an LSP net-

work is the path restoration latency which corre-

sponds to the amount time elapsed from the

instance the link fault is detected to the instance

the backup path is restored. However, this latency

depends on several factors such as design of the

signaling protocol for fault detection and propa-

gation, how the control packets are handled in the
network, and network load. The amount of time

spent in backup path route computation is a small

part of the total restoration latency. Since, we do

not model data path and faults, we do not measure

path restoration latency metric.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

SPF-HOP
SPF-RES

(a)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

(b)

Fig. 13. Performance: homogeneous topology: (a) fraction rejected and (b) TBSF.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300

B
ac

ku
p

B
an

dw
id

th
 S

av
ed

 F
ra

ct
io

n

Request Volume in 1000’s (HT=100,LF=0.1)[EXP]

EWSPF
ENUM

SPF

Fig. 14. Performance: BBSF vs. ReqVolume (homogeneous

topology).

S. Norden et al. / Computer Networks 46 (2004) 197–218 213
6.3. Experiment set I (EXPTSET-I)

In all graphs, legend WSP stands for EWSPF

and ENUM stands for ENUM-WSPF. Each

simulation data point was the result of 10 runs

with different seed values. The confidence interval

was 95%.

6.3.1. Homogeneous case

Fig. 13(a) and (b) illustrates the FR and TBSF

performance metrics for the four routing schemes,

namely EWSPF, ENUM-WSPF, SPF-HOP, SPF-

RES.

1. Fraction rejected. As expected, the FR increases

as the load or RV increases. EWSPF and
ENUM-WSPF are significantly better than

SPF-HOP and SPF-RES with up to 66% gains

for 150,000 requests. As the load (volume) in-

creases, EWSPF performs better than ENUM-

WSPF. At 300,000 requests EWSPF provides

20% improvement over ENUM-WSPF and

50% gains on SPF. ENUM-WSPF performs

slightly worse than EWSPF due to using the
pre-computed trees for both primary and back-

up paths, whereas EWSPF uses the pre-com-

puted trees only for the primary path and

recalculates the link weights for the backup

path. ENUM-WSPF trades off additional SPF

computation and attempts to use the existing

trees as much as possible. The main problem

with using existing pre-computed information
is that the same tree may appear in multiple

bandwidth levels nullifying the enumeration
process and forcing ENUM-WSPF to resort

to the shortest path using residual capacity as

the last resort. Hence the performance of

ENUM-WSPF which is still significantly better

than SPF-RES will tend to SPF-RES especially

at higher loads. For the rest of the discussion,

we will compare both EWSPF and ENUM-

WSPF to SPF-RES which performs slightly
better than SPF-HOP.

2. TBSF vs. request volume. In terms of the overall

bandwidth saved when compared to SPF-RES,

we see that EWSPF saves 33% and ENUM-

WSPF saves around 18% over SPF. The gains

decrease with increase in load since links are

saturated and finding free shareable bandwidth

becomes increasingly difficult with an increase
in the number of requests.

3. BBSF. As shown in Fig. 14, we see that EWSPF

provides better use of the shared bandwidth

0.1

0.15

0.2

0.25

0.3

0.35

0.4

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000's (HT=100,LF=0.025)

EWSPF
ENUM

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50 100 150 200 250 300

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(O
ve

r
SP

F)

Request Volume in 1000's (HT=100,LF=0.1)

EWSPF
ENUM

(a) (b)

Fig. 16. TBSF performance for heterogeneous topology: (a) LF¼ 0.025 and (b) LF¼ 0.10.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000's (HT=100,LF=0.1)

EWSPF
ENUM

SPF-RES

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300

Fr
ac

tio
n

R
ej

ec
te

d

Request Volume in 1000's (HT=100,LF=0.025)

EWSPF
ENUM

SPF-RES

(b)(a)

Fig. 15. Fraction rejected performance for heterogeneous topology: (a) LF¼ 0.10 and (b) LF¼ 0.025.

214 S. Norden et al. / Computer Networks 46 (2004) 197–218
over the paths that it chooses, compared to the
use of shared bandwidth on the paths chosen by

ENUM-WSPF. Effectively EWSPF saves be-

tween 60% and 80% as compared to ENUM-

WSPF which saves 40–60%.

6.3.2. Heterogeneous case

1. Fraction rejected vs. volume. Fig. 15 shows FR

vs. the volume for an LF value of 2.5%, 10%
of the OC-48 links. Since we have the access

links at OC-12, an LF of 10% of OC-48 will re-

sult in some requests that are nearly 50% of the

access link. This causes the access links to get

saturated very quickly and leads to higher rejec-

tion probabilities for all the schemes. The gains

of EWSPF/ENUM-WSPF are also less over

SPF-RES at the higher LF due to the early sat-
uration leading to dropping requests.
2. TBSF vs. volume. We found that gains of
EWSPF/ENUM-WSPF are sensitive to LF;

they are less at an LF of 10% as compared to

an LF of 2.5%. From Fig. 16, we see that

EWSPF provides around 28% gains and

ENUM-WSPF provides 13% gains for a vol-

ume of 150,000 requests. However, once the

LF is reduced to 2.5% the gains for EWSPF

and ENUM-WSPF improve to 35% and 20%,
respectively, for the same request volume.

3. BBSF vs. volume. From Fig. 17, we see EWSPF

saving around 75% and ENUM-WSPF saving

45% at an LF of 10%. The corresponding gains

in Fig. 17 for an LF of 2.5% are between

60% and 70% for EWSPF and between 35%

and 50% for ENUM-WSPF. The variation

is less at the higher LF value since the links are
saturated very early irrespective of the request

Table 5

Comparison of EWSP with LPA

Scheme Total BW

(EXPT A)

Request rejection fraction

(EXPT B)

EWSP 2722 0.062

LPA 2736 0.064

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300

B
ac

ku
p

B
an

dw
id

th
 S

av
ed

 F
ra

ct
io

n

Request Volume in 1000’s (HT=100,LF=0.025)

EWSPF
ENUM

SPF_RES

Fig. 17. Backup bandwidth saved for heterogenous case (where

LF is 2.5%).

S. Norden et al. / Computer Networks 46 (2004) 197–218 215
volume, whereas with a smaller LF, the links

take more time and accept more requests before

being saturated leading to a larger variation.

6.4. EXPTSET-II: comparison to Kodialam et al.’s

scheme

From the results of EXPTSET-I, we see that

EWSP performs well in all the cases we considered

and is very simple to implement. Therefore, we

selected EWSPF as a candidate algorithm to

compare with Kodialam et al. algorithm. We
modified our simulator to handle the dataset de-

scribed in 6.1. Kodialam et al.’s scheme models the

backup path routing as a linear programming

problem that uses only three variables F ;G;R. It
develops a dual-based algorithm that solves the

primal linear program to obtain an upper bound

UB and it is a dual problem to obtain a lower

bound LB. Iteratively running the algorithm re-
duces (UB–LB) difference and brings the solutions

closer to the optimal. Each iteration involves

solving multiple shortest path problems and a

large number of iterations ranging from 100 to 500

may be required to get a satisfactory convergence.

We call this scheme as linear programming ap-

proach (LPA) for the rest of this discussion.

We performed two kinds of experiments: (a)
EXPT A: when links have infinite capacity and no

request is rejected; (b) when links have finite

capacity and requests are dropped. For the first set

of experiments, we measured the total bandwidth

that is reserved by the schemes for all requests. For
the second EXPT B, The goal of the second set of
experiments is to measure the rejection fraction.

Our results are summarized in Table 5.

We can see that our scheme shows improvement

in the rejection fraction over LPA. The savings

accrue from the use of BLDM to reduce primary-

to-backup link wastage that was described in 3.

However, we also noticed significant standard

deviation among 5 runs (each with 100 demands).
We believe that the limited size of the datasets is the

cause of such large deviations, and also the rela-

tively small performance gains. Our scheme is very

simple as it involves only two shortest-path com-

putations, unlike Kodialam et al’s scheme which

requires 10–100 s of SPFs. It is also easy to deploy,

since it is directly based on link state protocols.

6.5. Experiments using periodic updates

We performed experiments to characterize im-

pact of frequency of BLD matrix update on

routing inaccuracies. Specifically, we simulated

BLD matrix distribution via column vector up-

dates performed periodically with a frequency of

once every 0.30 time units. We assume that the
updates are effectively distributed across the entire

network. In the following figures, we study the

performance of two algorithms, EWSPF and basic

SPF. We performed experiments on the homoge-

neous and heterogeneous topologies that were

described earlier. Each request was uniformly

distributed up to 10% of the link bandwidth on the

homogeneous topologies and 2.5% for the hetero-
geneous topologies. We denote EWSPF(UPD) and

SPF(UPD) as the EWSPF and SPF versions with

BLDM updates respectively.

Fig. 18 shows the rejection fraction for the

EWSPF and SPF algorithms with and without

updates (centralized approach). It is interesting to

observe that the performance of the model with

updates is quite close to the centralized versions.

50 k 100 k 150 k 200 k 250 k 300 k

Request Volume

0.1

0.2

0.3

0.4

0.5

T
ot

al
 B

an
dw

id
th

 S
av

ed
 F

ra
ct

io
n

(T
B

SF
)

EWSPF (LF=0.1, Homo)
EWSPF_UP (LF=0.1, Homo)
EWSPF_UP (LF=0.025, Hetero)
EWSPF (LF=0.025, Hetero)

Fig. 20. TBSF for different topologies (BM update model).

50 k 100 k 150 k 200 k 250 k 300 k

Number of requests (HT=100, LF=0.1, Homogenous topology)

1e–06

1e–05

0.0001

0.001

0.01

0.1

Fr
ac

tio
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF_UP
SPF
EWSPF_UP
EWSPF

Fig. 18. Rejection fraction for homogeneous topology (BM

update model).

216 S. Norden et al. / Computer Networks 46 (2004) 197–218
We do note that this is a homogeneous topology

without much variation in the routes as all links

have the same capacity. Fig. 19 shows the impact

on the more realistic heterogeneous topology, and

we see the impact of stale link state updates on the

EWSPF and SPF versions which perform signifi-

cantly worse than their centralized counterparts. It
should be noted that the chart is on a logarithmic

scale.

Fig. 20 shows the total bandwidth saved frac-

tion for the EWSPF protocols (centralized and

update based models) over the corresponding SPF

versions. The EWSPF version does provide more

savings in bandwidth than the version with up-
50 k 100 k 150 k 200 k 250 k 300 k

Number of requests (HT=100, LF=0.1, Heterogenous topology)

0.001

0.010

0.100

1.000

Fr
ac

tio
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF_UP
SPF
EWSPF_UP
EWSPF

Fig. 19. Rejection fraction for heterogeneous topology (BLDM

update model).
dates as expected due to the stale link information

that guides the EWSPF(UPD) version. It is inter-
esting to note that the performance gap between

the two does not change for the heterogeneous

topology in Fig. 20. At higher loads (250000 re-

quests), the savings of the update version is almost

identical to the centralized scheme. Though the

rejection fraction results are significantly worse for

EWSPF(UPD) compared to EWSPF, the band-

width saved overall is still comparable to the cen-
tralized model.

Fig. 21 shows the backup bandwidth saved

fraction for the homogeneous and heterogeneous

topologies. The performance of the EWSPF(UPD)

scheme is almost similar to the centralized EWSPF

scheme shown earlier in the simulation results.

Finally, we show the impact of the update

period on the rejection fraction for the SPF and
EWSPF protocols for the heterogeneous topology

(Fig. 22). This was evaluated at a specific request

volume of 100,000 requests. As the update period

increases, the probability of using stale link state

also increases. Recall that the mean call duration is

100 time units. As we progress from 10 time unit

period to a 200 time unit update period, we see a

significant drop in performance (up to a factor of
2.5 times for SPF) and (a factor of 1.25) times for

EWSPF. However, with EWSPF the deterioration

of performance is much slower and for small up-

date periods performance is quite acceptable.

0 50 100 150 200

BLDM update frequency (REQ= 100k, LF=0.1, Heterogenous)

0.000

0.010

0.020

0.030

0.040

0.050

Fr
ac

tio
n

of
 R

eq
ue

st
s

R
ej

ec
te

d
(F

R
)

SPF
EWSPF

Fig. 22. Impact of update period on rejection fraction for

EWSPF (BM update model).

50 k 100 k 150 k 200 k 250 k 300 k

Request Volume

0.5

0.55

0.6

0.65

0.7

0.75

0.8

B
ac

ku
p

B
an

dw
id

th
 S

av
ed

 F
ra

ct
io

n
(B

B
SF

)

EWSPF_UP (LF=0.1, Homo)
EWSPF_UP (LF=0.025, Hetero)

Fig. 21. BBSF for different topologies (BM update model).

S. Norden et al. / Computer Networks 46 (2004) 197–218 217
7. Conclusions

In this paper, we addressed the problem of

distributed routing of bandwidth guaranteed paths

in generic label switched networks with restora-

tion. We showed that approaches to this problem

that use only three variables per link l, namely: F,

load induced by the primary paths, G, load in-
duced by the backup paths, and R, residual

bandwidth, suffer from pessimistic link selection

during backup routing and ambiguity in the deci-

sion on amount of bandwidth to release during

path termination. We proposed a new form of
state information called backup load distribution

(BLD) matrix BM that captures for each link, the

distribution of primary load backed up on other

links in the network. For a fixed sized network,

this matrix is of constant size and the overhead of

disseminating it does not grow with the number of
active paths.

We proposed two new algorithms: (1) enhanced

widest shortest path first (EWSPF) and (2) enu-

meration widest shortest path first (ENUM-WSPF)

that use the BLD matrix. Both use pre-com-

putation schemes of widest shortest path first

(WSPF) algorithm and run in bounded time. Also,

they can be used for any label switching networks,
such as wavelength switching optical networks and

packet networks such as MPLS, ATM networks.

Our simulation results for sample topologies

show 30–50% reduction in number of rejected re-

quests and 30–40% savings in total bandwidth

used for backup connections. We also show that

though performance of our routing schemes is

sensitive to frequency of BLD matrix updates, for
practical range of update periods, performance

degradation resulting from stale state information

is insignificant.
References

[1] B.S. Davie, Y. Rekhter, MPLS Technology and Applica-

tions, Morgan Kaufmann, San Francisco, CA, 2000.

[2] M. Kodialam, T.V. Lakshman, Dynamic routing of

bandwidth guaranteed paths with restoration, in: Proceed-

ings of IEEE INFOCOM, Tel-Aviv, Israel, 2000.

[3] S. Norden, M.M. Buddhikot, M. Waldvogel, S. Suri,

Routing bandwidth guaranteed paths with restoration in

label switched networks, in: Proceedings of IEEE Interna-

tional Conference on Network Protocols (ICNP 2001),

Riverside, CA, November 2001, pp. 71–79.

[4] M. Kodialam, T.V. Lakshman, Dynamic routing of locally

restorable bandwidth guaranteed tunnels using aggregated

link usage information, in: Proceedings of IEEE INFO-

COM, 2001, pp. 884–893.

[5] L. Li, M.M. Buddhikot, C. Chekuri, K. Guo, Routing

bandwidth guaranteed paths with local restoration in label

switched networks, in: Proceedings of IEEE International

Conference on Network Protocols (ICNP ’02), Paris,

France, November 2002, pp. 110–120.

[6] G. Apostolopoulos, R. Gu�erin, S. Kamat, S.K. Tripathi,

Quality of service routing: a performance perspective, in:

Proceedings of ACM SIGCOMM, Vancouver, BC, Can-

ada, September 1998.

218 S. Norden et al. / Computer Networks 46 (2004) 197–218
[7] G. Apostolopoulos, R. Gu�erin, S. Kamat, Implementation

and performance measurements of QoS routing extensions

to OSPF, in: Proceedings of IEEE INFOCOM, 1999, pp.

680–688.

[8] G. Apostolopoulos, R. Gu�erin, S. Kamat, A. Orda, T.

Przygienda, D. Williams, QoS routing mechanisms and

OSPF extensions, RFC 2676, Internet Engineering Task

Force, August 1999.

[9] T.H. Wu, Fiber Network Service Survivability, Artech

House, Norwood, MA, 1992.

[10] D. Zhou, S. Subramaniam, Survivability in optical net-

works, IEEE Network 14 (6) (2000) 16–23.

[11] M. Kodialam, T.V. Lakshman, Minimum interference

routing with applications to MPLS traffic engineering, in:

Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, March

2000.

[12] S. Suri, M. Waldvogel, D. Daniel Bauer, P.R. Warkhede,

Profile-based routing and traffic engineering, Computer

Communications 26 (4) (2003) 351–365.

[13] D. Bauer, A new minimum-interference routing algorithm

based on flow maximization, IEE Electronics Letters 38 (8)

(2002) 364–365.

[14] J. Moy, OSPF version 2, RFC 2328, Internet Engineering

Task Force, April 1998.

[15] D.O. Awduche, L. Berger, D.-H. Gan, T. Li, V. Srinivasan,

G. Swallow, RSVP-TE: Extensions to RSVP for LSP

tunnels, RFC 3209, Internet Engineering Task Force,

December 2001.

[16] E.C. Rosen, A. Viswanathan, R. Callon, Multiprotocol

label switching architecture, RFC 3031, Internet Engineer-

ing Task Force, January 2001.

[17] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarz-

kopf, Computational Geometry: Algorithms and Applica-

tions, Springer, Berlin, 1997.

[18] H. Ma, I. Sing, J.S. Turner, Constraint based design of

ATM networks, an experimental study, Technical Report

WUCS-97-15, Department of Computer Science, Wash-

ington University, St. Louis, MO, 1997.

Samphel Norden received the B.S.
(1998) from Indian Institute of Tech-
nology, Madras and Doctor of Science
(D.Sc.) (2002) degrees in computer
science from Washington University in
St. Louis. He is currently a Member of
Technical Staff (MTS) in the Center
for Mobile Networking Research in
Lucent Bell Laboratories. His research
interests include mobile networking,
denial-of-service detection and pre-
vention, Inter-domain QoS routing,
Overlay Networks and Wireless secu-
rity.
Milind M. Buddhikot is a Member of
Technical Staff in the Center for Net-
working Research at Lucent Bell Labs.
His current research interests are in the
areas of systems and protocols for
public wireless networks, MPLS path
routing, and multimedia messaging
and stream caching. He holds a Doc-
tor of Science (D.Sc.) in computer
science (July 1998) from Washington
University in St. Louis, and a Master
of Technology (M.Tech.) in commu-
nication engineering (December 1988)
from the Indian Institute of Technol-
ogy (I.I.T), Bombay. He has authored over 26 research papers
and 9 patent submissions in design of multimedia systems and
protocols, layer-4 packet classification, MPLS path routing and
integrated public wireless networks. He served as a co-guest-
editor of IEEE Network magazine’s March 2001 Special issue
on ‘‘Fast IP Packet Forwarding and Classification for Next
Generation Internet Services’’. Currently, he serves as an Editor
for the IEEE/ACM Transactions on Networking.

Marcel Waldvogel joined IBM Re-
search, Zurich Research Laboratory in
2001 after holding faculty position at
Washington University in St. Louis.
He graduated from ETH Zurich,
where he received a Diploma degree in
Computer Science and a Ph.D. in
Electrical Engineering. He has pub-
lished over 40 publications on
high-speed networking, multimedia
communications, network security,
overlays, and storage networks.
Subhash Suri is a Professor of Com-
puter Science at the University of
California, Santa Barbara. Prior to
joining UCSB, he was an Associate
Professor at Washington University
(1994–2000) and a Member of Tech-
nical Staff at Bellcore (1987–1994). He
received a Ph.D. in computer science
from the Johns Hopkins University in
1987. He has published over 80 re-
search papers in design and analysis of
algorithms, Internet commerce, com-
putational geometry, computer net-
working, combinatorial optimization,
and graph theory. He serves on the editorial board of the
Computational Geometry journal, and has served on numerous
panels and symposium program committees. He has been
awarded several research grants from the National Science
Foundation.

	Routing bandwidth-guaranteed paths with restoration in label-switched networks
	Introduction
	Overview of main ideas and contributions
	Outline of the paper

	Background
	Characteristics of routing algorithms
	Fault model
	Backup-path sharing
	Widest open shortest path first

	Limitations of using 3VPI partial network state
	Primary-to-backup link wastage
	Ambiguity in bandwidth release

	Backup-path routing using the backup load distribution matrix
	The BLD matrix
	Freely shareable bandwidth
	Modeling the link cost
	Implementation overhead

	Routing algorithms
	Generic two step algorithm
	Enumeration-based algorithm (ENUM-WSPF)

	Simulation results
	Simulator details
	Performance metrics
	Experiment set I (EXPTSET-I)
	Homogeneous case
	Heterogeneous case

	EXPTSET-II: comparison to Kodialam et al.'s scheme
	Experiments using periodic updates

	Conclusions
	References

